The world’s lithium is either mined in Australia or from salt flats in the Andean regions of Argentina, Bolivia and Chile, operations that use large amounts of groundwater to pump out the brines, drawing down the water available to Indigenous farmers and herders. The water required for producing batteries has meant that manufacturing electric vehicles is about 50 percent more water intensive than traditional internal combustion engines. Deposits of rare earths, concentrated in China, often contain radioactive substances that can emit radioactive water and dust.
Focusing first on cobalt, automakers and other manufacturers have committed to eliminating “artisanal” cobalt from their supply chains, and have also said they will develop batteries that decrease, or do away with, cobalt altogether. But that technology is still in development, and the prevalence of these mines means these commitments “aren’t realistic,” said Mickaël Daudin of Pact, a nonprofit organization that works with mining communities in Africa.
Instead, Mr. Daudin said, manufacturers need to work with these mines to lessen their environmental footprint and make sure miners are working in safe conditions. If companies acted responsibly, the rise of electric vehicles would be a great opportunity for countries like Congo, he said. But if they don’t, “they will put the environment, and many, many miners’ lives at risk.”
Recycling could be better
As earlier generations of electric vehicles start to reach the end of their lives, preventing a pileup of spent batteries looms as a challenge.
Most of today’s electric vehicles use lithium-ion batteries, which can store more energy in the same space than older, more commonly-used lead-acid battery technology. But while 99 percent of lead-acid batteries are recycled in the United States, estimated recycling rates for lithium-ion batteries are about 5 percent.
Experts point out that spent batteries contain valuable metals and other materials that can be recovered and reused. Depending on the process used, battery recycling can also use large amounts of water, or emit air pollutants.
“The percentage of lithium batteries being recycled is very low, but with time and innovation, that’s going to increase,” said Radenka Maric, a professor at the University of Connecticut’s Department of Chemical and Biomolecular Engineering.